Practical Statistics for Data Scientists

Practical Statistics for Data Scientists
  • Author : Peter Bruce,Andrew Bruce
  • Publisher : "O'Reilly Media, Inc."
  • Pages : 318
  • Relase : 2017-05-10
  • ISBN : 9781491952917

Practical Statistics for Data Scientists Book Review:

Statistical methods are a key part of of data science, yet very few data scientists have any formal statistics training. Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not. Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you’re familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format. With this book, you’ll learn: Why exploratory data analysis is a key preliminary step in data science How random sampling can reduce bias and yield a higher quality dataset, even with big data How the principles of experimental design yield definitive answers to questions How to use regression to estimate outcomes and detect anomalies Key classification techniques for predicting which categories a record belongs to Statistical machine learning methods that “learn” from data Unsupervised learning methods for extracting meaning from unlabeled data

Practical Statistics for Data Scientists

Practical Statistics for Data Scientists
  • Author : Peter Bruce,Andrew Bruce
  • Publisher : "O'Reilly Media, Inc."
  • Pages : 318
  • Relase : 2017-05-10
  • ISBN : 9781491952931

Practical Statistics for Data Scientists Book Review:

Statistical methods are a key part of of data science, yet very few data scientists have any formal statistics training. Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not. Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you’re familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format. With this book, you’ll learn: Why exploratory data analysis is a key preliminary step in data science How random sampling can reduce bias and yield a higher quality dataset, even with big data How the principles of experimental design yield definitive answers to questions How to use regression to estimate outcomes and detect anomalies Key classification techniques for predicting which categories a record belongs to Statistical machine learning methods that “learn” from data Unsupervised learning methods for extracting meaning from unlabeled data

Practical Statistics for Data Scientists

Practical Statistics for Data Scientists
  • Author : Peter C. Bruce,Andrew Bruce
  • Publisher :
  • Pages : 298
  • Relase : 2017
  • ISBN : 1491952954

Practical Statistics for Data Scientists Book Review:

"Statistical methods are a key part of of data science, yet very few data scientists have any formal statistics training. Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not. Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you're familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format. With this book, you'll learn: Why exploratory data analysis is a key preliminary step in data science ; How random sampling can reduce bias and yield a higher quality dataset, even with big data ; How the principles of experimental design yield definitive answers to questions ; How to use regression to estimate outcomes and detect anomalies ; Key classification techniques for predicting which categories a record belongs to ; Statistical machine learning methods that 'learn' from data ; Unsupervised learning methods for extracting meaning from unlabeled data"--Provided by publisher.

Practical Data Science with R

Practical Data Science with R
  • Author : John Mount,Nina Zumel
  • Publisher : Simon and Schuster
  • Pages : 568
  • Relase : 2019-11-17
  • ISBN : 9781638352747

Practical Data Science with R Book Review:

This invaluable addition to any data scientist's library shows you how to apply the R programming language and useful statistical techniques to everyday business situations as well as how to effectively present results to audiences of all levels. To answer the ever-increasing demand for machine learning and analysis, this new edition boasts additional R tools, modeling techniques, and more. Practical Data Science with R, Second Edition takes a practice-oriented approach to explaining basic principles in the ever-expanding field of data science. You'll jump right to real-world use cases as you apply the R programming language and statistical analysis techniques to carefully explained examples based in marketing, business intelligence, and decision support. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

Foundations of Statistics for Data Scientists

Foundations of Statistics for Data Scientists
  • Author : Alan Agresti,Maria Kateri
  • Publisher : CRC Press
  • Pages : 486
  • Relase : 2021-11-22
  • ISBN : 9781000462913

Foundations of Statistics for Data Scientists Book Review:

Foundations of Statistics for Data Scientists: With R and Python is designed as a textbook for a one- or two-term introduction to mathematical statistics for students training to become data scientists. It is an in-depth presentation of the topics in statistical science with which any data scientist should be familiar, including probability distributions, descriptive and inferential statistical methods, and linear modeling. The book assumes knowledge of basic calculus, so the presentation can focus on "why it works" as well as "how to do it." Compared to traditional "mathematical statistics" textbooks, however, the book has less emphasis on probability theory and more emphasis on using software to implement statistical methods and to conduct simulations to illustrate key concepts. All statistical analyses in the book use R software, with an appendix showing the same analyses with Python. The book also introduces modern topics that do not normally appear in mathematical statistics texts but are highly relevant for data scientists, such as Bayesian inference, generalized linear models for non-normal responses (e.g., logistic regression and Poisson loglinear models), and regularized model fitting. The nearly 500 exercises are grouped into "Data Analysis and Applications" and "Methods and Concepts." Appendices introduce R and Python and contain solutions for odd-numbered exercises. The book's website has expanded R, Python, and Matlab appendices and all data sets from the examples and exercises.

Applied Wavelet Analysis with S-PLUS

Applied Wavelet Analysis with S-PLUS
  • Author : Andrew Bruce,Hong-Ye Gao
  • Publisher : Springer Science & Business Media
  • Pages : 338
  • Relase : 1996-06-20
  • ISBN : 0387947140

Applied Wavelet Analysis with S-PLUS Book Review:

This book provides an introduction to wavelet analysis with the statistical software system S-PLUS. The book will be of interest primarily to electrical engineers and statisticians. The authors are employees of MathSoft, the publishers of S-PLUS.

Doing Data Science

Doing Data Science
  • Author : Cathy O'Neil,Rachel Schutt
  • Publisher : "O'Reilly Media, Inc."
  • Pages : 408
  • Relase : 2013-10-09
  • ISBN : 9781449363895

Doing Data Science Book Review:

Now that people are aware that data can make the difference in an election or a business model, data science as an occupation is gaining ground. But how can you get started working in a wide-ranging, interdisciplinary field that’s so clouded in hype? This insightful book, based on Columbia University’s Introduction to Data Science class, tells you what you need to know. In many of these chapter-long lectures, data scientists from companies such as Google, Microsoft, and eBay share new algorithms, methods, and models by presenting case studies and the code they use. If you’re familiar with linear algebra, probability, and statistics, and have programming experience, this book is an ideal introduction to data science. Topics include: Statistical inference, exploratory data analysis, and the data science process Algorithms Spam filters, Naive Bayes, and data wrangling Logistic regression Financial modeling Recommendation engines and causality Data visualization Social networks and data journalism Data engineering, MapReduce, Pregel, and Hadoop Doing Data Science is collaboration between course instructor Rachel Schutt, Senior VP of Data Science at News Corp, and data science consultant Cathy O’Neil, a senior data scientist at Johnson Research Labs, who attended and blogged about the course.

Data Mining for Business Analytics

Data Mining for Business Analytics
  • Author : Galit Shmueli,Peter C. Bruce,Nitin R. Patel
  • Publisher : John Wiley & Sons
  • Pages : 560
  • Relase : 2016-04-18
  • ISBN : 9781118729274

Data Mining for Business Analytics Book Review:

Data Mining for Business Analytics: Concepts, Techniques, and Applications in XLMiner®, Third Edition presents an applied approach to data mining and predictive analytics with clear exposition, hands-on exercises, and real-life case studies. Readers will work with all of the standard data mining methods using the Microsoft® Office Excel® add-in XLMiner® to develop predictive models and learn how to obtain business value from Big Data. Featuring updated topical coverage on text mining, social network analysis, collaborative filtering, ensemble methods, uplift modeling and more, the Third Edition also includes: Real-world examples to build a theoretical and practical understanding of key data mining methods End-of-chapter exercises that help readers better understand the presented material Data-rich case studies to illustrate various applications of data mining techniques Completely new chapters on social network analysis and text mining A companion site with additional data sets, instructors material that include solutions to exercises and case studies, and Microsoft PowerPoint® slides https://www.dataminingbook.com Free 140-day license to use XLMiner for Education software Data Mining for Business Analytics: Concepts, Techniques, and Applications in XLMiner®, Third Edition is an ideal textbook for upper-undergraduate and graduate-level courses as well as professional programs on data mining, predictive modeling, and Big Data analytics. The new edition is also a unique reference for analysts, researchers, and practitioners working with predictive analytics in the fields of business, finance, marketing, computer science, and information technology. Praise for the Second Edition "…full of vivid and thought-provoking anecdotes... needs to be read by anyone with a serious interest in research and marketing."– Research Magazine "Shmueli et al. have done a wonderful job in presenting the field of data mining - a welcome addition to the literature." – ComputingReviews.com "Excellent choice for business analysts...The book is a perfect fit for its intended audience." – Keith McCormick, Consultant and Author of SPSS Statistics For Dummies, Third Edition and SPSS Statistics for Data Analysis and Visualization Galit Shmueli, PhD, is Distinguished Professor at National Tsing Hua University’s Institute of Service Science. She has designed and instructed data mining courses since 2004 at University of Maryland, Statistics.com, The Indian School of Business, and National Tsing Hua University, Taiwan. Professor Shmueli is known for her research and teaching in business analytics, with a focus on statistical and data mining methods in information systems and healthcare. She has authored over 70 journal articles, books, textbooks and book chapters. Peter C. Bruce is President and Founder of the Institute for Statistics Education at www.statistics.com. He has written multiple journal articles and is the developer of Resampling Stats software. He is the author of Introductory Statistics and Analytics: A Resampling Perspective, also published by Wiley. Nitin R. Patel, PhD, is Chairman and cofounder of Cytel, Inc., based in Cambridge, Massachusetts. A Fellow of the American Statistical Association, Dr. Patel has also served as a Visiting Professor at the Massachusetts Institute of Technology and at Harvard University. He is a Fellow of the Computer Society of India and was a professor at the Indian Institute of Management, Ahmedabad for 15 years.

Practical Statistics for Data Scientists

Practical Statistics for Data Scientists
  • Author : Peter Bruce,Andrew Bruce,Peter Gedeck
  • Publisher : O'Reilly Media
  • Pages : 350
  • Relase : 2020-06-09
  • ISBN : 149207294X

Practical Statistics for Data Scientists Book Review:

Statistical methods are a key part of data science, yet few data scientists have formal statistical training. Courses and books on basic statistics rarely cover the topic from a data science perspective. The second edition of this practical guide--now including examples in Python as well as R--explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not. Many data scientists use statistical methods but lack a deeper statistical perspective. If you're familiar with the R or Python programming languages, and have had some exposure to statistics but want to learn more, this quick reference bridges the gap in an accessible, readable format. With this updated edition, you'll dive into: Exploratory data analysis Data and sampling distributions Statistical experiments and significance testing Regression and prediction Classification Statistical machine learning Unsupervised learning

Practical Statistics for the Analytical Scientist

Practical Statistics for the Analytical Scientist
  • Author : Peter Bedson,Trevor J Duguid Farrant
  • Publisher : Royal Society of Chemistry
  • Pages : 282
  • Relase : 2021-04-09
  • ISBN : 9781839164439

Practical Statistics for the Analytical Scientist Book Review:

Analytical chemists must use a range of statistical tools in their treatment of experimental data to obtain reliable results. Practical Statistics for the Analytical Scientist is a manual designed to help them negotiate the daunting specialist terminology and symbols. Prepared in conjunction with the Department of Trade and Industry's Valid Analytical Measurement (VAM) programme, this volume covers the basic statistics needed in the laboratory. It describes the statistical procedures that are most likely to be required including summary and descriptive statistics, calibration, outlier testing, analysis of variance and basic quality control procedures. To improve understanding, many examples provide the user with material for consolidation and practice. The fully worked answers are given both to check the correct application of the procedures and to provide a template for future problems. Practical Statistics for the Analytical Scientist will be welcomed by practising analytical chemists as an important reference for day to day statistics in analytical chemistry.

Practical Statistics for Environmental and Biological Scientists

Practical Statistics for Environmental and Biological Scientists
  • Author : John Townend
  • Publisher : John Wiley & Sons
  • Pages : 272
  • Relase : 2013-04-30
  • ISBN : 9781118687413

Practical Statistics for Environmental and Biological Scientists Book Review:

All students and researchers in environmental and biologicalsciences require statistical methods at some stage of their work.Many have a preconception that statistics are difficult andunpleasant and find that the textbooks available are difficult tounderstand. Practical Statistics for Environmental and BiologicalScientists provides a concise, user-friendly, non-technicalintroduction to statistics. The book covers planning and designingan experiment, how to analyse and present data, and the limitationsand assumptions of each statistical method. The text does not referto a specific computer package but descriptions of how to carry outthe tests and interpret the results are based on the approachesused by most of the commonly used packages, e.g. Excel, MINITAB andSPSS. Formulae are kept to a minimum and relevant examples areincluded throughout the text.

Head First Statistics

Head First Statistics
  • Author : Dawn Griffiths
  • Publisher : "O'Reilly Media, Inc."
  • Pages : 716
  • Relase : 2008-08-26
  • ISBN : 9780596800864

Head First Statistics Book Review:

A comprehensive introduction to statistics that teaches the fundamentals with real-life scenarios, and covers histograms, quartiles, probability, Bayes' theorem, predictions, approximations, random samples, and related topics.

Business Data Science: Combining Machine Learning and Economics to Optimize, Automate, and Accelerate Business Decisions

Business Data Science: Combining Machine Learning and Economics to Optimize, Automate, and Accelerate Business Decisions
  • Author : Matt Taddy
  • Publisher : McGraw Hill Professional
  • Pages : 384
  • Relase : 2019-08-23
  • ISBN : 9781260452785

Business Data Science: Combining Machine Learning and Economics to Optimize, Automate, and Accelerate Business Decisions Book Review:

Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product. Use machine learning to understand your customers, frame decisions, and drive value The business analytics world has changed, and Data Scientists are taking over. Business Data Science takes you through the steps of using machine learning to implement best-in-class business data science. Whether you are a business leader with a desire to go deep on data, or an engineer who wants to learn how to apply Machine Learning to business problems, you’ll find the information, insight, and tools you need to flourish in today’s data-driven economy. You’ll learn how to: •Use the key building blocks of Machine Learning: sparse regularization, out-of-sample validation, and latent factor and topic modeling•Understand how use ML tools in real world business problems, where causation matters more that correlation•Solve data science programs by scripting in the R programming language Today’s business landscape is driven by data and constantly shifting. Companies live and die on their ability to make and implement the right decisions quickly and effectively. Business Data Science is about doing data science right. It’s about the exciting things being done around Big Data to run a flourishing business. It’s about the precepts, principals, and best practices that you need know for best-in-class business data science.

An Introduction to Statistics with Python

An Introduction to Statistics with Python
  • Author : Thomas Haslwanter
  • Publisher : Springer
  • Pages : 278
  • Relase : 2016-07-20
  • ISBN : 9783319283166

An Introduction to Statistics with Python Book Review:

This textbook provides an introduction to the free software Python and its use for statistical data analysis. It covers common statistical tests for continuous, discrete and categorical data, as well as linear regression analysis and topics from survival analysis and Bayesian statistics. Working code and data for Python solutions for each test, together with easy-to-follow Python examples, can be reproduced by the reader and reinforce their immediate understanding of the topic. With recent advances in the Python ecosystem, Python has become a popular language for scientific computing, offering a powerful environment for statistical data analysis and an interesting alternative to R. The book is intended for master and PhD students, mainly from the life and medical sciences, with a basic knowledge of statistics. As it also provides some statistics background, the book can be used by anyone who wants to perform a statistical data analysis.

Practical Statistics for Engineers and Scientists

Practical Statistics for Engineers and Scientists
  • Author : Nicholas P. Cheremisinoff,Louise Ferrante
  • Publisher : CRC Press
  • Pages : 224
  • Relase : 2020-09-24
  • ISBN : 9781000125115

Practical Statistics for Engineers and Scientists Book Review:

This book provides direction in constructing regression routines that can be used with worksheet software on personal computers. The book lists useful references for those readers who desire more in-depth understanding of the mathematical bases, and is helpful for science and engineering students.

Practical Statistics for Geographers and Earth Scientists

Practical Statistics for Geographers and Earth Scientists
  • Author : Nigel Walford
  • Publisher : John Wiley & Sons
  • Pages : 440
  • Relase : 2011-07-05
  • ISBN : 9781119957027

Practical Statistics for Geographers and Earth Scientists Book Review:

Practical Statistics for Geographers and Earth Scientists provides an introductory guide to the principles and application of statistical analysis in context. This book helps students to gain the level of competence in statistical procedures necessary for independent investigations, field-work and other projects. The aim is to explain statistical techniques using data relating to relevant geographical, geospatial, earth and environmental science examples, employing graphics as well as mathematical notation for maximum clarity. Advice is given on asking the appropriate preliminary research questions to ensure that the correct data is collected for the chosen statistical analysis method. The book offers a practical guide to making the transition from understanding principles of spatial and non-spatial statistical techniques to planning a series analyses and generating results using statistical and spreadsheet computer software. Learning outcomes included in each chapter International focus Explains the underlying mathematical basis of spatial and non-spatial statistics Provides an geographical, geospatial, earth and environmental science context for the use of statistical methods Written in an accessible, user-friendly style Datasets available on accompanying website at www.wiley.com/go/Walford

Think Like a Data Scientist

Think Like a Data Scientist
  • Author : Brian Godsey
  • Publisher : Simon and Schuster
  • Pages : 328
  • Relase : 2017-03-09
  • ISBN : 9781638355205

Think Like a Data Scientist Book Review:

Summary Think Like a Data Scientist presents a step-by-step approach to data science, combining analytic, programming, and business perspectives into easy-to-digest techniques and thought processes for solving real world data-centric problems. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Data collected from customers, scientific measurements, IoT sensors, and so on is valuable only if you understand it. Data scientists revel in the interesting and rewarding challenge of observing, exploring, analyzing, and interpreting this data. Getting started with data science means more than mastering analytic tools and techniques, however; the real magic happens when you begin to think like a data scientist. This book will get you there. About the Book Think Like a Data Scientist teaches you a step-by-step approach to solving real-world data-centric problems. By breaking down carefully crafted examples, you'll learn to combine analytic, programming, and business perspectives into a repeatable process for extracting real knowledge from data. As you read, you'll discover (or remember) valuable statistical techniques and explore powerful data science software. More importantly, you'll put this knowledge together using a structured process for data science. When you've finished, you'll have a strong foundation for a lifetime of data science learning and practice. What's Inside The data science process, step-by-step How to anticipate problems Dealing with uncertainty Best practices in software and scientific thinking About the Reader Readers need beginner programming skills and knowledge of basic statistics. About the Author Brian Godsey has worked in software, academia, finance, and defense and has launched several data-centric start-ups. Table of Contents PART 1 - PREPARING AND GATHERING DATA AND KNOWLEDGE Philosophies of data science Setting goals by asking good questions Data all around us: the virtual wilderness Data wrangling: from capture to domestication Data assessment: poking and prodding PART 2 - BUILDING A PRODUCT WITH SOFTWARE AND STATISTICS Developing a plan Statistics and modeling: concepts and foundations Software: statistics in action Supplementary software: bigger, faster, more efficient Plan execution: putting it all together PART 3 - FINISHING OFF THE PRODUCT AND WRAPPING UP Delivering a product After product delivery: problems and revisions Wrapping up: putting the project away

Data Science for Business

Data Science for Business
  • Author : Foster Provost,Tom Fawcett
  • Publisher : "O'Reilly Media, Inc."
  • Pages : 414
  • Relase : 2013-07-27
  • ISBN : 9781449374280

Data Science for Business Book Review:

Written by renowned data science experts Foster Provost and Tom Fawcett, Data Science for Business introduces the fundamental principles of data science, and walks you through the "data-analytic thinking" necessary for extracting useful knowledge and business value from the data you collect. This guide also helps you understand the many data-mining techniques in use today. Based on an MBA course Provost has taught at New York University over the past ten years, Data Science for Business provides examples of real-world business problems to illustrate these principles. You’ll not only learn how to improve communication between business stakeholders and data scientists, but also how participate intelligently in your company’s data science projects. You’ll also discover how to think data-analytically, and fully appreciate how data science methods can support business decision-making. Understand how data science fits in your organization—and how you can use it for competitive advantage Treat data as a business asset that requires careful investment if you’re to gain real value Approach business problems data-analytically, using the data-mining process to gather good data in the most appropriate way Learn general concepts for actually extracting knowledge from data Apply data science principles when interviewing data science job candidates

Modern Data Science with R

Modern Data Science with R
  • Author : Benjamin S. Baumer,Daniel T. Kaplan,Nicholas J. Horton
  • Publisher : CRC Press
  • Pages : 673
  • Relase : 2021-03-31
  • ISBN : 9780429575396

Modern Data Science with R Book Review:

From a review of the first edition: "Modern Data Science with R... is rich with examples and is guided by a strong narrative voice. What’s more, it presents an organizing framework that makes a convincing argument that data science is a course distinct from applied statistics" (The American Statistician). Modern Data Science with R is a comprehensive data science textbook for undergraduates that incorporates statistical and computational thinking to solve real-world data problems. Rather than focus exclusively on case studies or programming syntax, this book illustrates how statistical programming in the state-of-the-art R/RStudio computing environment can be leveraged to extract meaningful information from a variety of data in the service of addressing compelling questions. The second edition is updated to reflect the growing influence of the tidyverse set of packages. All code in the book has been revised and styled to be more readable and easier to understand. New functionality from packages like sf, purrr, tidymodels, and tidytext is now integrated into the text. All chapters have been revised, and several have been split, re-organized, or re-imagined to meet the shifting landscape of best practice.

R for Political Data Science

R for Political Data Science
  • Author : Francisco Urdinez,Andres Cruz
  • Publisher : CRC Press
  • Pages : 436
  • Relase : 2020-11-18
  • ISBN : 9781000204513

R for Political Data Science Book Review:

R for Political Data Science: A Practical Guide is a handbook for political scientists new to R who want to learn the most useful and common ways to interpret and analyze political data. It was written by political scientists, thinking about the many real-world problems faced in their work. The book has 16 chapters and is organized in three sections. The first, on the use of R, is for those users who are learning R or are migrating from another software. The second section, on econometric models, covers OLS, binary and survival models, panel data, and causal inference. The third section is a data science toolbox of some the most useful tools in the discipline: data imputation, fuzzy merge of large datasets, web mining, quantitative text analysis, network analysis, mapping, spatial cluster analysis, and principal component analysis. Key features: Each chapter has the most up-to-date and simple option available for each task, assuming minimal prerequisites and no previous experience in R Makes extensive use of the Tidyverse, the group of packages that has revolutionized the use of R Provides a step-by-step guide that you can replicate using your own data Includes exercises in every chapter for course use or self-study Focuses on practical-based approaches to statistical inference rather than mathematical formulae Supplemented by an R package, including all data As the title suggests, this book is highly applied in nature, and is designed as a toolbox for the reader. It can be used in methods and data science courses, at both the undergraduate and graduate levels. It will be equally useful for a university student pursuing a PhD, political consultants, or a public official, all of whom need to transform their datasets into substantive and easily interpretable conclusions.