# Fundamentals Of Earthquake Engineering From Source

Download and Read online **Fundamentals Of Earthquake Engineering From Source** ebooks in PDF, epub, Tuebl Mobi, Kindle Book. Get Free **Fundamentals Of Earthquake Engineering From Source** Textbook and unlimited access to our library by created an account. Fast Download speed and ads Free!

## Fundamentals of Earthquake Engineering

- Author : Amr S. Elnashai,Luigi Di Sarno
- Publisher : John Wiley & Sons
- Pages : 493
- Relase : 2015-09-28
- ISBN : 9781118678923

**Fundamentals of Earthquake Engineering Book Review:**

Fundamentals of Earthquake Engineering: From Source to Fragility, Second Edition combines aspects of engineering seismology, structural and geotechnical earthquake engineering to assemble the vital components required for a deep understanding of response of structures to earthquake ground motion, from the seismic source to the evaluation of actions and deformation required for design, and culminating with probabilistic fragility analysis that applies to individual as well as groups of buildings. Basic concepts for accounting for the effects of soil-structure interaction effects in seismic design and assessment are also provided in this second edition. The nature of earthquake risk assessment is inherently multi-disciplinary. Whereas this book addresses only structural safety assessment and design, the problem is cast in its appropriate context by relating structural damage states to societal consequences and expectations, through the fundamental response quantities of stiffness, strength and ductility. This new edition includes material on the nature of earthquake sources and mechanisms, various methods for the characterization of earthquake input motion, effects of soil-structure interaction, damage observed in reconnaissance missions, modeling of structures for the purposes of response simulation, definition of performance limit states, fragility relationships derivation, features and effects of underlying soil, structural and architectural systems for optimal seismic response, and action and deformation quantities suitable for design. Key features: Unified and novel approach: from source to fragility Clear conceptual framework for structural response analysis, earthquake input characterization, modelling of soil-structure interaction and derivation of fragility functions Theory and relevant practical applications are merged within each chapter Contains a new chapter on the derivation of fragility Accompanied by a website containing illustrative slides, problems with solutions and worked-through examples Fundamentals of Earthquake Engineering: From Source to Fragility, Second Edition is designed to support graduate teaching and learning, introduce practising structural and geotechnical engineers to earthquake analysis and design problems, as well as being a reference book for further studies.

## Fundamentals of Earthquake Engineering

- Author : Amr S. Elnashai,Luigi Di Sarno
- Publisher : John Wiley & Sons Incorporated
- Pages : 384
- Relase : 2008-11-03
- ISBN : STANFORD:36105131747870

**Fundamentals of Earthquake Engineering Book Review:**

Fundamentals of Earthquake Engineering combines aspects of engineering seismology, structural and geotechnical earthquake engineering to assemble the vital components required for a deep understanding of response of structures to earthquake ground motion, from the seismic source to the evaluation of actions and deformation required for design. The nature of earthquake risk assessment is inherently multi-disciplinary. Whereas Fundamentals of Earthquake Engineering addresses only structural safety assessment and design, the problem is cast in its appropriate context by relating structural damage states to societal consequences and expectations, through the fundamental response quantities of stiffness, strength and ductility. The book is designed to support graduate teaching and learning, introduce practicing structural and geotechnical engineers to earthquake analysis and design problems, as well as being a reference book for further studies. Fundamentals of Earthquake Engineering includes material on the nature of earthquake sources and mechanisms, various methods for the characterization of earthquake input motion, damage observed in reconnaissance missions, modeling of structures for the purposes of response simulation, definition of performance limit states, structural and architectural systems for optimal seismic response, and action and deformation quantities suitable for design. The accompanying website at www.wiley.com/go/elnashai contains a comprehensive set of slides illustrating the chapters and appendices. A set of problems with solutions and worked-through examples is available from the Wley Editorial team. The book, slides and problem set constitute a tried and tested system for a single-semester graduate course. The approach taken avoids tying the book to a specific regional seismic design code of practice and ensures its global appeal to graduate students and practicing engineers.

## Fundamentals of Earthquake Engineering

- Author : Amr S. Elnashai,Luigi Di Sarno
- Publisher : John Wiley & Sons
- Pages : 496
- Relase : 2015-07-21
- ISBN : 9781118700464

**Fundamentals of Earthquake Engineering Book Review:**

Fundamentals of Earthquake Engineering: From Source to Fragility, Second Edition combines aspects of engineering seismology, structural and geotechnical earthquake engineering to assemble the vital components required for a deep understanding of response of structures to earthquake ground motion, from the seismic source to the evaluation of actions and deformation required for design, and culminating with probabilistic fragility analysis that applies to individual as well as groups of buildings. Basic concepts for accounting for the effects of soil-structure interaction effects in seismic design and assessment are also provided in this second edition. The nature of earthquake risk assessment is inherently multi-disciplinary. Whereas this book addresses only structural safety assessment and design, the problem is cast in its appropriate context by relating structural damage states to societal consequences and expectations, through the fundamental response quantities of stiffness, strength and ductility. This new edition includes material on the nature of earthquake sources and mechanisms, various methods for the characterization of earthquake input motion, effects of soil-structure interaction, damage observed in reconnaissance missions, modeling of structures for the purposes of response simulation, definition of performance limit states, fragility relationships derivation, features and effects of underlying soil, structural and architectural systems for optimal seismic response, and action and deformation quantities suitable for design. Key features: Unified and novel approach: from source to fragility Clear conceptual framework for structural response analysis, earthquake input characterization, modelling of soil-structure interaction and derivation of fragility functions Theory and relevant practical applications are merged within each chapter Contains a new chapter on the derivation of fragility Accompanied by a website containing illustrative slides, problems with solutions and worked-through examples Fundamentals of Earthquake Engineering: From Source to Fragility, Second Edition is designed to support graduate teaching and learning, introduce practising structural and geotechnical engineers to earthquake analysis and design problems, as well as being a reference book for further studies.

## Basic Earthquake Engineering

- Author : Halûk Sucuoğlu,Sinan Akkar
- Publisher : Springer
- Pages : 288
- Relase : 2014-05-09
- ISBN : 9783319010267

**Basic Earthquake Engineering Book Review:**

This book provides senior undergraduate students, master students and structural engineers who do not have a background in the field with core knowledge of structural earthquake engineering that will be invaluable in their professional lives. The basics of seismotectonics, including the causes, magnitude, and intensity of earthquakes, are first explained. Then the book introduces basic elements of seismic hazard analysis and presents the concept of a seismic hazard map for use in seismic design. Subsequent chapters cover key aspects of the response analysis of simple systems and building structures to earthquake ground motions, design spectrum, the adoption of seismic analysis procedures in seismic design codes, seismic design principles and seismic design of reinforced concrete structures. Helpful worked examples on seismic analysis of linear, nonlinear and base isolated buildings, earthquake-resistant design of frame and frame-shear wall systems are included, most of which can be solved using a hand calculator.

## Earthquake Engineering for Structural Design

- Author : W.F. Chen,E.M. Lui
- Publisher : CRC Press
- Pages : 264
- Relase : 2005-11-02
- ISBN : 9781420037142

**Earthquake Engineering for Structural Design Book Review:**

Many important advances in designing earthquake-resistant structures have occurred over the last several years. Civil engineers need an authoritative source of information that reflects the issues that are unique to the field. Comprising chapters selected from the second edition of the best-selling Handbook of Structural Engineering, Earthquake Eng

## Fundamentals of Seismic Loading on Structures

- Author : Tapan K. Sen
- Publisher : John Wiley & Sons
- Pages : 404
- Relase : 2009-04-29
- ISBN : 9780470742358

**Fundamentals of Seismic Loading on Structures Book Review:**

This book provides a practical guide to the basic essentials of earthquake engineering with a focus on seismic loading and structural design. Benefiting from the author’s extensive career in structural and earthquake engineering, dynamic analysis and lecturing, it is written from an industry perspective at a level suitable for graduate students. Fundamentals of Seismic Loading on Structures is organised into four major sections: introduction to earthquakes and related engineering problems, analysis, seismic loading, and design concepts. From a practical perspective, reviews linear and non-linear behaviour, introduces concepts of uniform hazard spectra, discusses loading provisions in design codes and examines soil-structure interaction issues, allowing the reader to quickly identify and implement information in a working environment. Discusses probabilistic methods that are widely employed in the assessment of seismic hazard, illustrating the use of Monte Carlo simulation with a number of worked examples. Summarises the latest developments in the field such as performance-based seismic engineering and advances in liquefaction research. “There are many books on earthquake engineering, but few are of direct use to the practising structural designer. This one, however, offers a new perspective, putting emphasis on the practical aspects of quantifying seismic loading, and explaining the importance of geotechnical effects during a major seismic event in readily understandable terms. The author has succeeded in marrying important seismological considerations with structural engineering practice, and this long-awaited book will find ready acceptance in the profession.” Professor Patrick J. Dowling CBE, DL, DSc, FIStructE, Hon MRIA, FIAE, FREng, FRS Chairman, British Association for the Advancement of Science Emeritus Professor and Retired Vice Chancellor, University of Surrey

## Fundamental Concepts of Earthquake Engineering

- Author : Roberto Villaverde
- Publisher : CRC Press
- Pages : 960
- Relase : 2009-01-16
- ISBN : 9781439883112

**Fundamental Concepts of Earthquake Engineering Book Review:**

While successfully preventing earthquakes may still be beyond the capacity of modern engineering, the ability to mitigate damages with strong structural designs and other mitigation measures are well within the purview of science. Fundamental Concepts of Earthquake Engineering presents the concepts, procedures, and code provisions that are currentl

## Fundamentals of Earthquake-Resistant Construction

- Author : Ellis L. Krinitzsky,James P. Gould,Peter H. Edinger
- Publisher : John Wiley & Sons
- Pages : 332
- Relase : 1993-01-12
- ISBN : 0471839817

**Fundamentals of Earthquake-Resistant Construction Book Review:**

Written for engineers without a background in seismic design. Provides design standards and parameters, explaining how to interpret and apply them. Examines and recommends procedures to accommodate the enormous forces and variations in effects common to major earthquakes. Covers practical aspects of soil behavior and structural and foundation design. Gives tips on special construction situations: foundations, dams and retaining walls, strengthening existing structures and construction over active faults.

## Earthquake Engineering for Structural Design

- Author : Victor Gioncu,Federico Mazzolani
- Publisher : CRC Press
- Pages : 570
- Relase : 2014-04-21
- ISBN : 9781482266283

**Earthquake Engineering for Structural Design Book Review:**

Developments in Earthquake Engineering have focussed on the capacity and response of structures. They often overlook the importance of seismological knowledge to earthquake-proofing of design. It is not enough only to understand the anatomy of the structure, you must also appreciate the nature of the likely earthquake. Seismic design, as detailed in this book, is the bringing together of Earthquake Engineering and Engineering Seismology. It focuses on the seismological aspects of design – analyzing various types of earthquake and how they affect structures differently. Understanding the distinction between these earthquake types and their different impacts on buildings can make the difference between whether a building stands or falls, or at least to how much it costs to repair. Covering the basis and basics of the major international codes, this is the essential guide for professionals working on structures in earthquake zones around the world.

## Seismic Analysis of Structures

- Author : T. K. Datta
- Publisher : Wiley
- Pages : 464
- Relase : 2010-05-24
- ISBN : 0470824611

**Seismic Analysis of Structures Book Review:**

While numerous books have been written on earthquakes, earthquake resistance design, and seismic analysis and design of structures, none have been tailored for advanced students and practitioners, and those who would like to have most of the important aspects of seismic analysis in one place. With this book, readers will gain proficiencies in the following: fundamentals of seismology that all structural engineers must know; various forms of seismic inputs; different types of seismic analysis like, time and frequency domain analyses, spectral analysis of structures for random ground motion, response spectrum method of analysis; equivalent lateral load analysis as given in earthquake codes; inelastic response analysis and the concept of ductility; ground response analysis and seismic soil structure interaction; seismic reliability analysis of structures; and control of seismic response of structures. Provides comprehensive coverage, from seismology to seismic control Contains useful empirical equations often required in the seismic analysis of structures Outlines explicit steps for seismic analysis of MDOF systems with multi support excitations Works through solved problems to illustrate different concepts Makes use of MATLAB, SAP2000 and ABAQUAS in solving example problems of the book Provides numerous exercise problems to aid understanding of the subject As one of the first books to present such a comprehensive treatment of the topic, Seismic Analysis of Structures is ideal for postgraduates and researchers in Earthquake Engineering, Structural Dynamics, and Geotechnical Earthquake Engineering. Developed for classroom use, the book can also be used for advanced undergraduate students planning for a career or further study in the subject area. The book will also better equip structural engineering consultants and practicing engineers in the use of standard software for seismic analysis of buildings, bridges, dams, and towers. Lecture materials for instructors available at www.wiley.com/go/dattaseismic

## Seismic Design of Concrete Buildings to Eurocode 8

- Author : Michael N. Fardis,Eduardo C. Carvalho,Peter Fajfar,Alain Pecker
- Publisher : CRC Press
- Pages : 419
- Relase : 2015-02-04
- ISBN : 9781482282535

**Seismic Design of Concrete Buildings to Eurocode 8 Book Review:**

An Original Source of Expressions and Tools for the Design of Concrete Elements with Eurocode Seismic design of concrete buildings needs to be performed to a strong and recognized standard. Eurocode 8 was introduced recently in the 30 countries belonging to CEN, as part of the suite of Structural Eurocodes, and it represents the first European Standard for seismic design. It is also having an impact on seismic design standards in countries outside Europe and will be applied there for the design of important facilities. This book: Contains the fundamentals of earthquakes and their effects at the ground level, as these are affected by local soil conditions, with particular reference to EC8 rules Provides guidance for the conceptual design of concrete buildings and their foundations for earthquake resistance Overviews and exemplifies linear and nonlinear seismic analysis of concrete buildings for design to EC8 and their modelling Presents the application of the design verifications, member dimensioning and detailing rules of EC8 for concrete buildings, including their foundations Serves as a commentary of the parts of EC8 relevant to concrete buildings and their foundations, supplementing them and explaining their proper application Seismic Design of Concrete Buildings to Eurocode 8 suits graduate or advanced undergraduate students, instructors running courses on seismic design and practicing engineers interested in the sound application of EC8 to concrete buildings. Alongside simpler examples for analysis and detailed design, it includes a comprehensive case study of the conceptual design, analysis and detailed design of a realistic building with six stories above grade and two basements, with a complete structural system of walls and frames. Homework problems are given at the end of some of the chapters.

## Seismic Risk and Engineering Decisions

- Author : Cinna Lomnitz
- Publisher : Elsevier
- Pages : 425
- Relase : 2012-12-02
- ISBN : 9780444601445

**Seismic Risk and Engineering Decisions Book Review:**

Seismic Risk and Engineering Decisions attempts to bridge the gap in decision making between earthquake characteristics and structural behavior. The book begins by providing the background on earthquake generation and characteristics. It reviews the present state of matters in seismicity assessment and treats uncertainties explicitly. The impact of earthquakes on large bodies of water and structures is also discussed. These discussions set the stage for the final part of the book, which deals with the principles and implications of seismic design decision analysis. The book also delves into the selection of instruments for seismological research and engineering applications, with emphasis on widely used conventional seismological equipment. This book is intended to help experienced consulting engineers in assessing seismic risk and making rational decisions when locating and designing important engineering works and when drafting building codes and land use regulations. It will also provide advanced students of engineering with bases for benefiting from his future experience.

## Structural Dynamics in Earthquake and Blast Resistant Design

- Author : BK Raghu Prasad
- Publisher : CRC Press
- Pages : 354
- Relase : 2020-08-31
- ISBN : 9781351250504

**Structural Dynamics in Earthquake and Blast Resistant Design Book Review:**

Focusing on the fundamentals of structural dynamics required for earthquake blast resistant design, Structural Dynamics in Earthquake and Blast Resistant Design initiates a new approach of blending a little theory with a little practical design in order to bridge this unfriendly gap, thus making the book more structural engineer-friendly. This is attempted by introducing the equations of motion followed by free and forced vibrations of SDF and MDF systems, D’Alembert’s principle, Duhammel’s integral, relevant impulse, pulse and sinusoidal inputs, and, most importantly, support motion and triangular pulse input required in earthquake and blast resistant designs, respectively. Responses of multistorey buildings subjected to earthquake ground motion by a well-known mode superposition technique are explained. Examples of real-size structures as they are being designed and constructed using the popular ETABS and STAAD are shown. Problems encountered in such designs while following the relevant codes of practice like IS 1893 2016 due to architectural constraints are highlighted. A very difficult constraint is in avoiding torsional modes in fundamental and first three modes, the inability to get enough mass participation, and several others. In blast resistant design the constraint is to model the blast effects on basement storeys (below ground level). The problem is in obtaining the attenuation due to the soil. Examples of inelastic hysteretic systems where top soft storey plays an important role in expending the input energy, provided it is not below a stiffer storey (as also required by IS 1893 2016), and inelastic torsional response of structures asymmetric in plan are illustrated in great detail. In both cases the concept of ductility is explained in detail. Results of response spectrum analyses of tall buildings asymmetric in plan constructed in Bengaluru using ETABS are mentioned. Application of capacity spectrum is explained and illustrated using ETABS for a tall building. Research output of retrofitting techniques is mentioned. Response spectrum analysis using PYTHON is illustrated with the hope that it could be a less expensive approach as it is an open source code. A new approach of creating a fictitious (imaginary) boundary to obtain blast loads on below-ground structures devised by the author is presented with an example. Aimed at senior undergraduates and graduates in civil engineering, earthquake engineering and structural engineering, this book: Explains in a simple manner the fundamentals of structural dynamics pertaining to earthquake and blast resistant design Illustrates seismic resistant designs such as ductile design philosophy and limit state design with the use of capacity spectrum Discusses frequency domain analysis and Laplace transform approach in detail Explains solutions of building frames using software like ETABS and STAAD Covers numerical simulation using a well-known open source tool PYTHON

## Structural Dynamics of Earthquake Engineering

- Author : S Rajasekaran
- Publisher : Elsevier
- Pages : 896
- Relase : 2009-05-30
- ISBN : 9781845695736

**Structural Dynamics of Earthquake Engineering Book Review:**

Given the risk of earthquakes in many countries, knowing how structural dynamics can be applied to earthquake engineering of structures, both in theory and practice, is a vital aspect of improving the safety of buildings and structures. It can also reduce the number of deaths and injuries and the amount of property damage. The book begins by discussing free vibration of single-degree-of-freedom (SDOF) systems, both damped and undamped, and forced vibration (harmonic force) of SDOF systems. Response to periodic dynamic loadings and impulse loads are also discussed, as are two degrees of freedom linear system response methods and free vibration of multiple degrees of freedom. Further chapters cover time history response by natural mode superposition, numerical solution methods for natural frequencies and mode shapes and differential quadrature, transformation and Finite Element methods for vibration problems. Other topics such as earthquake ground motion, response spectra and earthquake analysis of linear systems are discussed. Structural dynamics of earthquake engineering: theory and application using Mathematica and Matlab provides civil and structural engineers and students with an understanding of the dynamic response of structures to earthquakes and the common analysis techniques employed to evaluate these responses. Worked examples in Mathematica and Matlab are given. Explains the dynamic response of structures to earthquakes including periodic dynamic loadings and impulse loads Examines common analysis techniques such as natural mode superposition, the finite element method and numerical solutions Investigates this important topic in terms of both theory and practise with the inclusion of practical exercise and diagrams

## Engineering Seismology, Geotechnical and Structural Earthquake Engineering

- Author : Sebastiano D'Amico
- Publisher : BoD – Books on Demand
- Pages : 312
- Relase : 2013-03-20
- ISBN : 9789535110385

**Engineering Seismology, Geotechnical and Structural Earthquake Engineering Book Review:**

The mitigation of earthquake-related hazards represents a key role in the modern society. The mitigation of such kind of hazards spans from detailed studies on seismicity, evaluation of site effects, and seismo-induced landslides, tsunamis as well as and the design and analysis of structures to resist such actions. The study of earthquakes ties together science, technology and expertise in infrastructure and engineering in an effort to minimize human and material losses when they inevitably occur. Chapters deal with different topics aiming to mitigate geo-hazards such as: Seismic hazard analysis, Ground investigation for seismic design, Seismic design, assessment and remediation, Earthquake site response analysis and soil-structure interaction analysis.

## Earthquake Engineering

- Author : Yousef Bozorgnia,Vitelmo V. Bertero
- Publisher : CRC Press
- Pages : 976
- Relase : 2004-05-11
- ISBN : 9780203486245

**Earthquake Engineering Book Review:**

This multi-contributor book provides comprehensive coverage of earthquake engineering problems, an overview of traditional methods, and the scientific background on recent developments. It discusses computer methods on structural analysis and provides access to the recent design methodologies and serves as a reference for both professionals and res

## Handbook of Structural Engineering

- Author : W.F. Chen,E.M. Lui
- Publisher : CRC Press
- Pages : 1768
- Relase : 2005-02-28
- ISBN : 9781420039931

**Handbook of Structural Engineering Book Review:**

Continuing the tradition of the best-selling Handbook of Structural Engineering, this second edition is a comprehensive reference to the broad spectrum of structural engineering, encapsulating the theoretical, practical, and computational aspects of the field. The authors address a myriad of topics, covering both traditional and innovative approaches to analysis, design, and rehabilitation. The second edition has been expanded and reorganized to be more informative and cohesive. It also follows the developments that have emerged in the field since the previous edition, such as advanced analysis for structural design, performance-based design of earthquake-resistant structures, lifecycle evaluation and condition assessment of existing structures, the use of high-performance materials for construction, and design for safety. Additionally, the book includes numerous tables, charts, and equations, as well as extensive references, reading lists, and websites for further study or more in-depth information. Emphasizing practical applications and easy implementation, this text reflects the increasingly global nature of engineering, compiling the efforts of an international panel of experts from industry and academia. This is a necessity for anyone studying or practicing in the field of structural engineering. New to this edition Fundamental theories of structural dynamics Advanced analysis Wind and earthquake-resistant design Design of prestressed concrete, masonry, timber, and glass structures Properties, behavior, and use of high-performance steel, concrete, and fiber-reinforced polymers Semirigid frame structures Structural bracing Structural design for fire safety

## FUNDAMENTALS OF SOIL DYNAMICS AND EARTHQUAKE ENGINEERING

- Author : BHARAT BHUSHAN PRASAD
- Publisher : PHI Learning Pvt. Ltd.
- Pages : 584
- Relase : 2009-01-19
- ISBN : 9788120326705

**FUNDAMENTALS OF SOIL DYNAMICS AND EARTHQUAKE ENGINEERING Book Review:**

The majority of the cases of earthquake damage to buildings, bridges, and other retaining structures are influenced by soil and ground conditions. To address such phenomena, Soil Dynamics and Earthquake Engineering is the appropriate discipline. This textbook presents the fundamentals of Soil Dynamics, combined with the basic principles, theories and methods of Geotechnical Earthquake Engineering. It is designed for senior undergraduate and postgraduate students in Civil Engineering & Architecture. The text will also be useful to young faculty members, practising engineers and consultants. Besides, teachers will find it a useful reference for preparation of lectures and for designing short courses in Soil Dynamics and Geotechnical Earthquake Engineering. The book first presents the theory of vibrations and dynamics of elastic system as well as the fundamentals of engineering seismology. With this background, the readers are introduced to the characteristics of Strong Ground Motion, and Deterministic and Probabilistic seismic hazard analysis. The risk analysis and the reliability process of geotechnical engineering are presented in detail. An in-depth study of dynamic soil properties and the methods of their determination provide the basics to tackle the dynamic soil–structure interaction problems. Practical problems of dynamics of beam–foundation systems, dynamics of retaining walls, dynamic earth pressure theory, wave propagation and liquefaction of soil are treated in detail with illustrative examples.

## Spatial Variation of Seismic Ground Motions

- Author : Aspasia Zerva
- Publisher : CRC Press
- Pages : 486
- Relase : 2016-04-19
- ISBN : 1420009915

**Spatial Variation of Seismic Ground Motions Book Review:**

The spatial variation of seismic ground motions denotes the differences in the seismic time histories at various locations on the ground surface. This text focuses on the spatial variability of the motions that is caused by the propagation of the waveforms from the earthquake source through the earth strata to the ground surface, and it brings together the various aspects underlying this complicated phenomenon. Topics covered include: Evaluation of the spatial variability from seismic data recorded at dense instrument arrays by means of signal processing techniques Presentation of the most widely used parametric coherency models, along with brief descriptions of their derivation Illustration of the causes underlying the spatial variation of the motions and its physical interpretation Estimation of seismic ground-surface strains from single station data, spatial array records, and analytical methods Introduction of the concept of random vibrations as applied to discrete-parameter and continuous structural systems on multiple supports Generation of simulations and conditional simulations of spatially variable seismic ground motions Overview of the effects of the spatial variability of seismic motions on the response of long structures, such as pipelines, bridges and dams, with brief descriptions of select seismic codes that incorporate spatial variability issues in their design recommendations This book may serve as a tutorial and/or reference for graduate students, researchers and practicing engineers interested in advancing the current state of knowledge in the analysis and modeling of the spatial variation of the seismic ground motions, or utilizing spatially variable excitations in the seismic response evaluation of long structures.

## Earthquake Engineering - From Engineering Seismology to Optimal Seismic Design of Engineering Structures

- Author : Anonim
- Publisher :
- Pages :
- Relase : 2015
- ISBN : 9535163779

**Earthquake Engineering - From Engineering Seismology to Optimal Seismic Design of Engineering Structures Book Review:**